
© 2024 Snowflake Inc. All Rights Reserved

Advanced Streamlit for Python Developers

Pittsburgh, PA ՞ May 15, 2024

PyCon US

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Agenda

1. Intros 🤝
2. What is Streamlit? 🎈
3. Basic features 🧩
4. Advanced features 🚀
5. Q&A ❓
6. Product roadmap 🗺
7. Snack break 🍪 (10:30-10:45am)
8. Hands-on exercise 🫶

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Intros 🤝

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Intros 🤝
Who are we?

Tony Kipkemboi
Developer Advocate

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Intros 🤝
Who are we?

Caroline Frasca
Manager, Dev Rel & Partnerships

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

What is Streamlit? 🎈

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved 7

Step 1
Explore in a Jupyter
notebook.

Step 2
Copy-paste into a
Python script.

Step 3
Hack a Flask app.
HTML, HTTP, JS...

Step 4
Uh oh. Need
features. Code is
unintelligible.

My
App!!!

Step 5
Call in the tools team.
They get requirements.

Step 6
Lay out wireframe
and components.

Step 7
Code up the app in
CSS, React, JS, etc.

Step 13
Get IT to restart the app
every time it crashes
from a bug in the ML
library you're using

Step 8
Talk to IT and get
them to provision
you a server

Step 9
Have DevOps
configure it with the
right permissions

Step 10
Get the Networking
team to open a port
for your server

Step 11
Figure out how to
securely store and
pass db credentials
to your app

Step 12
Set up SSO and other
ACLs on the app so
that only certain
users can access

Getting from
data to action
is hard
Only a fraction of data questions are
ever answered since companies
haven’t built tools to capture or
analyze the data. 73% of data is
rendered effectively unused*
because it’s just too hard to build
the tools to use it.

Step 14
App finally released 2
months after you had
the idea

Step ∞
Call IT every time app
needs to update, scale…

Step ∞+1
Call IT every time there’s a
bug, kernel update, etc...

Step ∞+n
And repeat for every
new app you make! 7

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved 8

Step 1
Explore in a Jupyter
notebook.

Step 2
Copy-paste into a
Python script.

Step 3
Hack a Flask app.
HTML, HTTP, JS...

Step 4
Uh oh. Need
features. Code is
unintelligible.

My
App!!!

Step 5
Call in the tools team.
They get requirements.

Step 6
Lay out wireframe
and components.

Step 7
Code up the app in
CSS, React, JS, etc.

Step 13
Get IT to restart the app
every time it crashes
from a bug in the ML
library you're using

Step 8
Talk to IT and get
them to provision
you a server

Step 9
Have DevOps
configure it with the
right permissions

Step 10
Get the Networking
team to open a port
for your server

Step 11
Figure out how to
securely store and
pass db credentials
to your app

Step 12
Set up SSO and other
ACLs on the app so
that only certain
users can access

Step 14
App finally released 2
months after you had
the idea

Step ∞
Call IT every time app
needs to update, scale…

Step ∞+1
Call IT every time there’s a
bug, kernel update, etc...

Step ∞+n
And repeat for every
new app you make! 8

Streamlit is a
faster way to
build and share
data apps

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

What is Streamlit?
An open-source Python framework that delivers dynamic data apps in only a few lines of code

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Guessable, opinionated, and user-friendly Python syntax

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

It’s easy to add in interaction, layout, and themes

Choose from light
or dark theme or
set your own
custom colors

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Streamlit API

docs.streamlit.io

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Once you have the basics mastered… go crazy!

 Multi-page apps

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Once you have the basics mastered… go crazy!

Use layouts Try different themes Use components

https://streamlit.io/components

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Streamlit works with all your favorite Python libraries

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

and seamlessly integrates with your favorite AI tools

And many more! Get started at streamlit.io/generative-ai

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Live demo

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Get inspired by thousands of public apps

Check them out for yourself: streamlit.io/gallery

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Deploy anywhere, share with anyone

● Host unlimited public apps and one private
app on Streamlit Community Cloud

● Build on top of your Snowflake data with
Streamlit in Snowflake

● Our Community Deployment Wiki has guides
for deploying on many other platforms

Frictionless sharing experience

Get started with Streamlit Community Cloud: share.streamlit.io

https://discuss.streamlit.io/t/streamlit-deployment-guide-wiki/5099
https://share.streamlit.io/

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

The Streamlit community is here to support and inspire
Our forum is the best place to get started:

discuss.streamlit.io

Learn more about our community programs at
streamlit.io/community

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Remember, it only takes minutes to get started!

See our docs for more getting started info
with the Streamlit open-source framework

https://docs.streamlit.io/

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Basic features 📚

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Text elements 🔤
Display text in your app using headings and formatted text elements.

● Streamlit apps typically begin with st.title for the main title, followed by
st.header and st.subheader for section headings.

● Use st.text for plain text and st.markdown for Markdown content.

● The versatile st.write command supports multiple arguments and data
types.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Headings and body text 💬
Display text in your app using headings and body text commands.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Formatted text 📝
Display formatted and preformatted text, code block, and LaTex in your app.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Data elements 🧮
Streamlit has commands for easy data display and interaction

You can display your raw data using commands like:

● st.dataframe
● st.data_editor

○ st.column_config
● st.metric
● st.table
● st.json

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

st.dataframe 🔢
Display a dataframe as an interactive table

This command works with dataframes from Pandas, PyArrow, SnowPark, and
PySpark

import streamlit as st
import pandas as pd
import numpy as np

df = pd.DataFrame(
 np.random.randn(50, 20),
 columns=("col %d" % i for i in
range(20))
)

st.dataframe(df)

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

st.data_editor ✍
The data editor element allows you to edit dataframes and many other data structures in a
table-like UI.

import streamlit as st
import pandas as pd

df = pd.DataFrame(
 [
 {"command": "st.selectbox", "rating":
4, "is_widget": True},
 {"command": "st.balloons", "rating":
5, "is_widget": False},
 {"command": "st.time_input", "rating":
3, "is_widget": True},
]
)
edited_df = st.data_editor(df)

More st.data_editor demos: data-editor.streamlit.app

https://data-editor.streamlit.app/

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

st.column_config ⚙
Format st.data_editor columns to beautifully display your data

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

st.metric 🔢
Display a metric in big bold font, with an optional indicator of how the metric changed.

import streamlit as st

col1, col2, col3 = st.columns(3)
col1.metric("Temperature", "70 °F", "1.2
°F")
col2.metric("Wind", "9 mph", "-8%")
col3.metric("Humidity", "86%", "4%")

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

st.table 🏓
Display a static table.

This differs from st.dataframe in that the table in this case is static; its entire
contents are laid out directly on the page.

import streamlit as st
import pandas as pd
import numpy as np

df = pd.DataFrame(
 np.random.randn(10, 5),
 columns=("col %d" % i for i in
range(5))
)

st.table(df)

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

st.json 📃
Display object or string as a pretty-printed JSON string.

 import streamlit as st

 st.json({
 'foo': 'bar',
 'baz': 'boz',
 'stuff': [
 'stuff 1',
 'stuff 2',
 'stuff 3',
 'stuff 5',
],
 })

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Chart elements 📈
Streamlit supports several charting libraries, and our goal is to continually add support for
more.

● The most basic library in our arsenal is Matplotlib.

● There are also interactive charting libraries like Vega Lite (2D charts) and
deck.gl (maps and 3D charts).

● We also provide a few chart types that are “native” to Streamlit, like
st.line_chart and st.area_chart.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Simple chart elements 📉
Display an area chart, bar chart, line chart, or scatter chart, and map with points on it.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Advanced chart elements 📊
Display an area chart, bar chart, line chart, or scatter chart, and map with points on it.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Input elements 🔤
Streamlit allows you to bake in interactivity directly into your apps with buttons, sliders, text
inputs, and more.

Different types of input elements:

● Button
● Selection
● Numeric input
● Date and time input
● Text input

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Button elements 🔘
Display an interactive button to allow users to interact with your app.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Selection elements ✅
Display an interactive selection elements to allow users to interact with your app.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Numeric input elements #⃣
Display a numeric input element.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Date and time input elements 📆
Display a date and time input element.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Text input elements ⌨
Display a single-line or multi-line text input element and chat input element.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Media elements 📹
It’s easy to embed images, videos, and audio files directly into your Streamlit apps

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Layouts and containers
Several options for controlling how different elements are laid out on the screen.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Theming
Customize the look and feel of your Streamlit apps

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Multi-page apps 📄
Streamlit provides a frictionless way to create multi-page apps

your_working_directory/
├── pages/
│ ├── a_page.py
│ └── another_page.py
└── your_homepage.py

streamlit run your_homepage.py

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Beyond the basics 🚀

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

st.data_editor ✍
Display a data editor widget.

The data editor widget allows you to edit dataframes and many other data structures in a
table-like UI.

import streamlit as st
import pandas as pd

df = pd.DataFrame(
 [
 {"command": "st.selectbox", "rating":
4, "is_widget": True},
 {"command": "st.balloons", "rating":
5, "is_widget": False},
 {"command": "st.time_input", "rating":
3, "is_widget": True},
]
)
edited_df = st.data_editor(df)

More st.data_editor demos: data-editor.streamlit.app

https://data-editor.streamlit.app/

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

st.column_config ⚙
Format st.data_editor columns to beautifully display your data

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Custom components 🧩
Build your own Python modules to extend what’s possible with Streamlit – or use one of the
many existing community-build components!

Different types of custom components:

● Custom versions of existing Streamlit elements and widgets.
● Completely new Streamlit elements and widgets by wrapping existing React.js, Vue.js,

or other JavaScript widget toolkits.
● Rendering Python objects having methods that output HTML, such as IPython

__repr_html__.
● Convenience functions for commonly-used web features like GitHub gists and

Pastebin.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Custom components: build your own 🧩
2 types of components: static components and bi-directional components

Static components: rendered once; controlled by Python; useful to display HTML, render a
visual using an existing Python library, or render an iframe

Bi-directional components: have a frontend (HTML / any web tech you want) rendered via
an iframe and a Python API that Streamlit apps use to instantiate and talk to the frontend

Example of static component Example of bi-directional component
import streamlit as st
import streamlit.components.v1 as
components

embed streamlit docs in a streamlit app
components.iframe("https://example.com",
height=500)

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Custom components: bi-directional components 🧩
Each Streamlit component is its own webpage that gets rendered into an iframe – so you
can use just about any web tech you’d like to create that web page

We offer two templates to get started: one React-based template and one
TypeScript-only template

The templates also provide the folder structure needed to publish your component to PyPI,
so you can share your component with the world!

Limitations of custom components

● Can’t contain or communicate with other components
● Can’t modify the CSS of the rest of the app
● Can’t add or remove elements of the app

https://github.com/streamlit/component-template/tree/master/template
https://github.com/streamlit/component-template/tree/master/template-reactless

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Custom components: existing components 🧩
There are tons of preexisting components built by our community
🪄 PyGWalker demo 🖼 Components Gallery

https://pygwalkerdemo-cxz7f7pt5oc.streamlit.app/
https://streamlit.io/components

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Chat elements 💬
Build conversational apps and chatbots with Streamlit’s chat elements:
st.chat_message and st.chat_input

Use st.write_stream to stream responses and st.status to display output from
long-running tasks

import streamlit as st

if prompt := st.chat_input("Say something"):
 with st.chat_message("user"):
 st.write(prompt)

Basic example

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Chat elements 💬
Initialize chat history
if "messages" not in st.session_state:
 st.session_state.messages = []

Display chat messages from history on app rerun
for message in st.session_state.messages:
 with st.chat_message(message["role"]):
 st.markdown(message["content"])

React to user input
if prompt := st.chat_input("What is up?"):
 # Display user message in chat message container
 with st.chat_message("user"):
 st.markdown(prompt)
 # Add user message to chat history
 st.session_state.messages.append({"role": "user", "content":
prompt})

response = f"Echo: {prompt}"
Display assistant response in chat message container
with st.chat_message("assistant"):
 st.markdown(response)
Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content":
response})

More robust example: echo bot

Use st.session_state to store message history

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Chat elements 💬
client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])

if "openai_model" not in st.session_state:
 st.session_state["openai_model"] = "gpt-3.5-turbo"

if "messages" not in st.session_state:
 st.session_state.messages = []

for message in st.session_state.messages:
 with st.chat_message(message["role"]):
 st.markdown(message["content"])

if prompt := st.chat_input("What is up?"):
 st.session_state.messages.append({"role": "user", "content": prompt})
 with st.chat_message("user"):
 st.markdown(prompt)

 with st.chat_message("assistant"):
 stream = client.chat.completions.create(
 model=st.session_state["openai_model"],
 messages=[
 {"role": m["role"], "content": m["content"]}
 for m in st.session_state.messages
],
 stream=True,
)
 response = st.write_stream(stream)
 st.session_state.messages.append({"role": "assistant", "content": response})

More robust example: ChatGPT-like app

✅ Use st.session_state to store message
history

✅ Use st.write_stream to stream GPT-3.5’s
responses

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Connections and databases 📊
Connect your Streamlit app to your favorite data source through your API of
choice or st.connection

The st.connection API makes it easy to connect your app to data in just a few
lines of code

Example: connect to Snowflake
Initialize connection.
conn = st.connection("snowflake")

Perform query.
df = conn.query("SELECT * from mytable;", ttl=600)

Print results.
for row in df.itertuples():
 st.write(f"{row.NAME} has a :{row.PET}:")

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Connections and databases: st.connection 📊
Build your own connection or use one of many created by the community

🖼 Connections Gallery

https://streamlit.io/components?category=connections

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Client-server architecture 🏛
Streamlit apps have a client-server architecture

Server = Python backend Client = frontend viewed through browser

Brains of your app – performs computations
for all users who view app

Starts up when someone executes the
command streamlit run your_app.py

Runs on the machine where this command
was run (also called the host)

The client is the frontend of your app (which
is viewed through your browser of choice)

If your app is running locally, your computer
runs both the server and client

If your app is deployed and someone views
your app through the browser, their device is
the client

��

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Client-server architecture: impact on app design 🏛
How does this architecture impact how you build your app?

1. The computer running or hosting your app is responsible for providing the
compute and storage for all users

2. Your app won’t have access to a user’s files, directories, or OS (unless a user
uploads specific files)

3. If your app communicates with peripheral devices (e.g. camera), you must
use Streamlit commands/custom components to access those devices
through the browser and communicate between client and server

4. If your app uses any program or process outside of Python, those programs
or processes will run on the server, not on the user’s machine (unless the
server is the user’s machine!)

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Execution model 👟
Any time something must be updated in the UI of your app, Streamlit reruns
your entire Python script from top to bottom

This happens in two situations:
1. When you modify your app’s source code
2. When a user interacts with a widget

Note: callback functions will always run before the rest of the script.

There are a few ways to handle this execution model:
● Caching
● Forms
● Session state
● Fragments

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Review: Streamlit app model 🔍
1. Streamlit apps are Python scripts that run from top to bottom.

2. Every time a user opens a browser tab pointing to your app, the script is executed and a new session

starts.

3. As the script executes, Streamlit draws its output live in a browser.

4. Every time a user interacts with a widget, your script is re-executed and Streamlit redraws its output in the

browser. The output value of that widget matches the new value during that rerun.

5. Scripts use caching to avoid recomputing expensive functions, so updates happen very fast.

6. Session state lets you save information that persists between reruns when you need more than a simple

widget.

7. Streamlit apps can contain multiple pages, which are defined in separate .py files in a pages folder.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Caching: st.cache_data and st.cache_resource ⚡
Store the results of slow function calls, so they only run once ➡ faster apps

Streamlit has two caching decorators: st.cache_data and st.cache resource

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Caching: control cache size and duration ⚡
Control the cache size and duration through:

● Time-to-live (TTL) parameter sets a time to live on a cached function (in
seconds) – useful to prevent stale data and prevent cache from growing too
large

● max_entries parameter sets the maximum number of entries in the cache
– useful to prevent the cache from growing too large. When a new entry is
added to a full cache, the oldest entry will be removed.

Customize loading spinner through the show_spinner parameter (disable the
spinner or display a custom message)

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Caching: hashing input parameters ⚡
To compare input parameters, Streamlit hashes them and compares them to
stored hash keys

What happens if your parameters aren’t hashable?
● Exclude unhashable parameters from caching by prepending the parameter name with

an underscore. If that parameter changes, Streamlit will still return cached result if all
other parameters match.

● Use hash_funcs parameter to specify custom hashing function (use a function that
returns deterministic, true hash values).

@st.cache_data(hash_funcs={MyCustomClass: hash_func})

@st.cache_data
def fetch_data(_db_connection, num_rows): # Don't hash _db_connection
 data = _db_connection.fetch(num_rows)
 return data

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Forms 📥
Batch elements together with a “Submit” button

● Forms are containers that visually group other elements and widgets
together, and contain a submit button

● When the submit button is clicked, all widget values are sent to Streamlit
in a batch

● Use “with” notation or call methods directly on the form

● Every form must have a submit button

● st.button and st.download_button can’t be added to a form

● Can appear anywhere within your app, but can’t be embedded inside
other forms

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Forms 📥
Batch elements together with a “Submit” button

import streamlit as st

with st.form("my_form"):
 st.write("Inside the form")
 slider_val = st.slider("Form slider")
 checkbox_val = st.checkbox("Form checkbox")

 # Every form must have a submit button.
 submitted = st.form_submit_button("Submit")
 if submitted:
 st.write("slider", slider_val, "checkbox", checkbox_val)

st.write("Outside the form")

Demo app

https://doc-form1.streamlit.app/

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Session state 🧠
Store and persist app state

● Share variables across reruns, for each user session

if 'key' not in st.session_state:
 st.session_state['key'] = 'value'

Attribute-based syntax
if 'key' not in st.session_state:
 st.session_state.key = 'value'

Initialize values
st.write(st.session_state.key)

st.write(st.session_state)

Read values

Attribute-like API
st.session_state.key = 'value2'

Dictionary-like syntax
st.session_state['key'] = 'value2' #

Update values
Delete a single key-value pair
del st.session_state[key]

Delete all items
for key in st.session_state.keys():
 del st.session_state[key]

Delete values

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Session state: widgets 🧠
Store and persist app state

Every widget with a key is automatically added to session state

st.text_input("Your name", key="name")

This exists now:
st.session_state.name

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Session state: callbacks 🧠
Callbacks: Python functions that are called when an input widget changes – add
them via on_change and on_click parameters and be sure to define the callback
function above the widget declaration

When an input widget changes, the callback function gets executed first, and
then the app is executed from top to bottom

Widgets that support on_change
st.checkbox, st.color_pickers, st.date_input,
st.data_editor, st.file_uploader, st.multiselect,
st.number_input, st.radio, st.select_slider,
st.selectbox, st.slider, st.text_area, st.text_input,
st.time_input, st.toggle

Widgets that support on_click
st.button, st.download_button, st.form_submit

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Session state: limitations 🧠
● For forms, only the submit button has a callback (not widgets inside form)
● Callback functions are only supported on input widgets

● Modifying the value of a widget via the session state API (i.e.
st.session_state.my_slider = 7) after instantiating isn’t allowed ➡
StreamlitAPIException

● Setting widget state via the session state API and using the value
parameter in your widget declaration isn’t recommended ➡ warning on the
first run

● Setting the state of st.button and button-like widgets via the session state
API isn’t allowed ➡ StreamlitAPIException

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Fragments 🍕
Rerun a function separately from the rest of your app

st.experimental_fragment: decorator to turn a function into a fragment
that can rerun independently from the full script

● When a user interacts with an input widget created by the fragment, only
the fragment reruns (not the whole app!)

● run_every parameter allows you to auto-rerun fragment every X seconds,
hours, days, etc.

● Trigger a full app rerun from inside a fragment with st.rerun

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Fragments : example 🍕
Rerun a function separately from the rest of your app

import streamlit as st

if "script_runs" not in st.session_state:
 st.session_state.script_runs = 0
 st.session_state.fragment_runs = 0

@st.experimental_fragment
def example_fragment_func():
 st.session_state.fragment_runs += 1
 st.button("Rerun fragment")
 st.write(f"Fragment says it ran {st.session_state.fragment_runs} times.")

st.session_state.script_runs += 1
example_fragment_func()
st.button("Rerun full script")
st.write(f"Full script says it ran {st.session_state.script_runs} times.")
st.write(f"Full script sees that fragment ran {st.session_state.fragment_runs} times.")

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Fragments : example 🍕
Rerun a function separately from the rest of your app

Demo app

https://doc-fragment.streamlit.app/

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Deep dive on widget behavior 🎚
Widgets are session-dependent
● Widget state depends on a particular session.
● The actions of one user don’t impact widgets of any other user’s session.
● If a user opens multiple tabs to access the same app, each tab is a unique

session (and changing the widget in one tab won’t impact the same widget
in other tabs).

Widgets return simple Python data types
● The value of a widget is a Python type – e.g. st.button returns a boolean
● The first time a widget function is called (before user interaction), it returns

the default value.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Deep dive on widget behavior 🎚
Keys help distinguish widgets and access their values
● Widget keys help distinguish two otherwise identical widgets and create a

way to access and manipulate widget value through session state.
● Streamlit can’t understand two identical widgets on the same page without

keys.

Widget order of operations
● When a user interacts with a widget, the order of operations is:

○ st.session_state value is updated
○ Callback function is executed
○ Page reruns with widget function returning new value

Remember: callback functions run before everything else

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Deep dive on widget behavior 🎚
Widget statefulness
● Changing the parameters of a widget (e.g. default value, min or max

value) ➡ Streamlit will see it as a new widget/reset it
● You can get around this by using a separate key in session state to save

widget values independently

Widget life cycle
● When a widget is called, Streamlit checks if the widget already exists with

same parameters – if yes, reconnect; if no, create a new one
● Widget’s IDs are based on parameters (like label, min or max value, default

value, key, etc.)

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Deep dive on widget behavior 🎚
Widget clean-up process
● When Streamlit gets to the end of a script run, it will delete data for any

widgets in memory not rendered on-screen
○ All key-value pairs in st.session_state associated w/ widgets not

on-screen will be deleted

If you want your widgets to retain statefulness when changing pages or
modifying their parameters, you can either use separate keys stored in session
state to persist widget values or interrupt the widget clean-up process

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Deep dive on widget behavior 🎚
Interrupting the widget clean-up process
● When you manually save data to a key in session state, it becomes

detached from any widget (in terms of the clean-up process)
● So you can prevent a widget’s key-value pair from being deleted via the

clean-up process by adding the following to the top of every page:

st.session_state.my_key = st.session_state.my_key

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Widget behavior: summary 🎚
1. The actions of one user do not affect the widgets of any other user.

2. A widget function call returns the widget's current value (a simple Python type – e.g.

st.button returns a boolean value).

3. Widgets return their default values on their first call before a user interacts with them.

4. A widget's identity depends on the arguments passed to the widget function. Changing a

widget's label, min or max value, default value, placeholder text, help text, or key will cause

it to reset.

5. If you don't call a widget function in a script run, Streamlit will delete the widget's

information—including its key-value pair in Session State. If you call the same widget

function later, Streamlit treats it as a new widget.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

App testing: overview 🧪
Streamlit’s app testing framework allows you to run headless tests on your app

● Use the AppTest class to simulate a running app – set up, manipulate, and
inspect app contents via API

● Run the tests using a tool like pytest – tests are typically run locally or in
a CI environment like GitHub Actions

We’re going to walk through a quick example of Streamlit app testing using
pytest

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

App testing: intro to pytest 🧪
pytest is a Python framework that makes it easy to write small, readable tests

● Name your test scripts test_<name>.py or <name>_test.py
● Within these files, each test is written as a function whose name must

begin or end with test
● Add as many tests within a script as you want
● When you call pytest, all test_<name>.py files will be used for testing

– each function within those files will be executed

Learn more about pytest 👉 docs.pytest.org

https://docs.pytest.org/en/8.2.x/contents.html

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

App testing: example 🧪
Here’s the structure of our example project:
myproject/
├── app.py
└── tests/
 └── test_app.py

"""app.py"""
import streamlit as st

Initialize st.session_state.beans
st.session_state.beans = st.session_state.get("beans", 0)

st.title("Bean counter :paw_prints:")

addend = st.number_input("Beans to add", 0, 10)
if st.button("Add"):
 st.session_state.beans += addend
st.markdown(f"Beans counted: {st.session_state.beans}")

Here’s our simple app:

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

App testing: example 🧪
Simple demo app

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

App testing: example 🧪
Testing file
"""test_app.py"""
from streamlit.testing.v1 import AppTest

def test_increment_and_add():
 """A user increments the number input, then clicks Add"""
 at = AppTest.from_file("app.py").run()
 at.number_input[0].increment().run()
 at.button[0].click().run()
 assert at.markdown[0].value == "Beans counted: 1"

The app itself contains 4 elements: st.title; st.number_input;
st.button; st.markdown

The test contains a single test in the function test_increment_and_add

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

App testing: example 🧪
Let’s break down the test itself

at = AppTest.from_file("app.py").run()

Initializes the simulated app and executes the first script run

at.number_input[0].increment().run()

1.

2.

Simulates a user clicking the plus icon to increment the number input (and
the resulting script rerun)

at.button[0].click().run()3.

Simulates a user clicking the “Add” button (and the resulting script rerun)

assert at.markdown[0].value == "Beans counted: 1"4.

Check if the correct message is displayed at the end.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

App testing: example 🧪
assert at.markdown[0].value == "Beans counted: 1"

● Assertions are the ❤ of tests! If the assertion is true, the test passes. If
false, the test fails.

● Tests can have multiple assertions, but it is a good idea to focus your
tests on a single behavior.

To run the tests, you’ll open the command line, navigate to the project
directory, and run the command pytest

cd myproject

pytest

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Visual customization 🎨
What are the options for visually customizing your Streamlit apps?

● Theming allows you to customize the main colors used by your
app and to choose between a few different fonts

● You can also use Streamlit’s default Light and Dark themes

[theme]
primaryColor="#F63366"
backgroundColor="#FFFFFF"
secondaryBackgroundColor="#F0F2F6"
textColor="#262730"
font="sans serif"

● Officially supported: themes
○ Simply add a .streamlit/config.toml file

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Visual customization 🎨
Default light and dark themes

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Visual customization 🎨
You can also customize the theme via the theme editor

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Visual customization 🎨
What are the options for visually customizing your Streamlit apps?

● Not officially supported: adding CSS via st.markdown
1. Determine the CSS selectors for the elements you want to style

(Developer > Inspect Elements in Chrome is helpful for this!)
2. Add CSS in-line via st.markdown or read from a separate CSS file

using f.read and st.markdown

Drawbacks
Using custom CSS with Streamlit isn’t officially supported – class names and IDs
of Streamlit widgets and page elements may change in future releases of
Streamlit, in which case you’ll have to update your custom CSS to keep the
styling consistent.

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Visual customization 🎨

1. Identify CSS selectors
via “Inspect Elements” in
Chrome (“Inspector” in
Firefox; “Web Inspector”
in Safari)

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Visual customization 🎨
2. Use those selectors
to add CSS to the app

"""style.css"""
div.st-emotion-cache-ocqkz7 {
 background-color: #EEEEEE;
 border: 2px solid #CCCCCC;
 padding: 5% 5% 5% 10%;
 border-radius: 5px;
}

import streamlit as st

with open('style.css') as f:
 st.markdown(f'<style>{f.read()}</style>',
unsafe_allow_html=True)

col1, col2, col3 = st.columns(3)
col1.metric("Temperature", "70 °F", "1.2 °F")
col2.metric("Wind", "9 mph", "-8%")
col3.metric("Humidity", "86%", "4%")

3. Read style.css file via
st.markdown

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Visual customization 🎨

4. Bask in the glory of
your updated UI 🤩

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Q&A ❓

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Roadmap: what’s in the works? 🗺

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Roadmap: what’s coming?
In the next 3 months

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Roadmap: what’s coming?
In the next 3 months

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Roadmap: what’s coming?
In the next 6 months

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Roadmap: what’s coming?
Beyond

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Roadmap: what’s coming?
Beyond

© 2024 Snowflake Inc. All Rights Reserved© 2024 Snowflake Inc. All Rights Reserved

Roadmap: what’s coming?
Strong feelings on our roadmap? Let us know!
github.com/streamlit/streamlit/issues

Keep tabs on our plans:
roadmap.streamlit.app

https://github.com/streamlit/streamlit/issues
https://roadmap.streamlit.app/

