DOCKERFILE QUICK REFERENCE

See $ man dockerfile for detailed reference

FROM <image>

FROM <image>:<tag>

Sets the base image for subsequent instructions. Dockerfile
must start with FROM instruction.

MAINTAINER <name>

LABEL ...

Sets the Author field for the generated images
Adds metadata to an image. A label is a key-value pair

LABEL <key>=<value> <key2>=<value2> ...
LABEL <key> <value>

RUN ...

RUN <command>

Executes any commands in a new layer on top of the
current image and commits the results. There are two
forms:

Run the command in the shell /bin/sh -c

RUN ["<ezecutable>", "<paraml>", "<param2>"]

CMD ...

CMD ["<ezecutable>",

Executable form. The square brackets are a part of the
syntax

Provides defaults for executing container. There could be
at most one CMD instruction in a Dockerfile

"<parami>", "<param2>"]

Executable form

CMD ["<param1>", "<param2>"]

Provide default arguments to ENTRYPOINT

CMD <command args ...>

ENTRYPOINT ...

Run the command in the shell /bin/sh -c

Helps you configure a container that can be run as an
executable. The ENTRYPOINT instruction adds an entry
command that is not overwritten when arguments are
passed to docker run. This is different from the behavior of
cMD. This allows arguments to be passed to the entrypoint

ENTRYPOINT ["<ezecutable>", "<paraml>", "<param2>"]

Executable form

ENTRYPOINT <command paraml param2 ...>

Run the command in the shell /bin/sh -c

EXPOSE <porti1> <port2> ...

Informs Docker that the container listens on the specified
network ports at runtime. Docker uses this information
to interconnect containers using links and to set up port
redirection on the host system

ENV <key> <value>Sets the environment variable <key> to the value <value>.

This value is passed to all future RUN, ENTRYPOINT, and CMD
instructions

COPY <src> <dest>

COPY ["<src>",

ADD <src> <dest>

ADD ["<src>", ...

"<dest>"]
Copies new files, directories or remote file URLs to the
filesystem of the container at path <dest>. All new files
and directories are created with mode 0755 and with the
uid and gid of 0.

"<dest>"]
Like copY, but additionally allows <src> to be an URL, and
if <src> is an archive in a recognized format, it will be
unpacked. The best practice is to prefer copy

VOLUME ["/some/path"]

USER <user>

Creates a mount point with the specified name and marks
it as holding externally-mounted volumes from the native
host or from other containers

USER <user>:<group>

Sets the username or UID used for running subsequent
commands. <user> can be either username or UID; <group>
can be either group name or GID

WORKDIR /path/to/workdir

ARG <name>

Sets the working directory for the RUN, CMD, ENTRYPOINT, COPY
and ADD Dockerfile commands that follow. Relative paths
are defined relative to the path of the previous WORKDIR
instruction.

ARG <name>=<default value>

Defines a variable that users can pass at build-time to
the builder with the docker build command using the
--build-arg <varname>=<value> flag

ONBUILD <instruction>

Adds a trigger instruction to an image. The trigger is
executed at a later time, when the image is used as the
base for another build. Docker executes the trigger in
the context of the downstream build, as if the trigger
existed immediately after the FROM instruction in the
downstream Dockerfile.

DOCKER CLI QUICK REFERENCE

See $ man docker-<command> for detailed reference; e.g. $ man docker-build
Building images

$ docker build [<opts>] <path> | <URL>
Build a new image from the source code at PATH
-f, --file path/to/Dockerfile
Path to the Dockerfile to use. Default: Dockerfile.
--build-arg <varname>=<value>
Name and value of a build argument defined with ARG
Dockerfile instruction
-t "<name>[:<tag>]"
Repository names (and optionally with tags) to be applied
to the resulting image
--label =<label>
Set metadata for an image
Suppress the output generated by containers
Remove intermediate containers after a successful build

-q, ——quiet
—-Irm
Creating, running and stopping containers

$ docker run [<opts>] <image> [<command>] [<arg>...]
Run a command in a new container

-i, --interactive

Keep STDIN open even if not attached
-t, --tty Allocate a pseudo-TTY
-v, --volume [<host-dir>:J<container-dir>[:<opts>]

Bind mount a volume. Options are comma-separated:
[ro,rw]. By default, rw is used.
--device =<host-dev>:<container-dev>[:<opts>]
Add a host device to
--device="/dev/sda:/dev/xvdc:rwm".
Possible <opts> flags: r: read, w: write, m: mknod
-d, --detach Detached (daemon) mode
-e, ——env NAME[="value"]
Set environment variable. If the value is omitted, the value
will be taken from the current environment.
--env-file file
Read in a line delimited file of environment variables
--entrypoint "some/entry/point”
Overwrite the default ENTRYPOINT of the image
--hostname ="<hostname>"
Container host name
--add-host =<hostname>:<ip>
Add a custom host-to-IP mapping
—--net ="<mode>"
Set the network mode for the container (default: bridge):
create a network stack on the default Docker

the container; e.g.

-h,

® bridge:
bridge
none: no networking

container:<name|id>: reuse another container’s stack
host: use the Docker host network stack

connect to a user-defined

<network-name> | <network-id>:
network

--group-add =<groups>
Add additional groups to run as
Automatically remove the container when it exits
--restart ="no/on-failure[:<maz-retry>]/always/unless-stopped"
Restart policy; default: no
--name "foo"” Assign a name to the container
--detach-keys ="<keys>"
Override the key sequence to detach a container. Default:
"ctrl-p ctrl-q"
$ docker create [<opts>] <image> [<command>] [<arg>...]
Create a new container, but don’t run it (instead, print its
id). See options for docker run
$ docker start [<opts>] <container> [<container>...]
Start one or more containers

—-Irm

-a, --attach Attach container’s STDOUT and STDERR and forward
all signals to the process
-i, --interactive

Attach container’s STDIN
$ docker stop [<opts>] <container> [<container>...]
Stop one or more containers by sending SIGTERM and
then SIGKILL after a grace period
--time [=10]
Number of seconds to wait before killing the container
$ docker kill [<opts>] <container> [<container>...]
Kill a runing container using SIGKILL or a specified signal
-s, ——signal [="KILL"]
Signal to send to the container
$ docker pause <container> [<container>...]
Pause all processes within a container
$ docker unpause <container> [<container>...]
Unpause all processes within a container

-t,

DOCKER CLI QUICK REFERENCE (continued)

Interacting with running containers

$ docker attach [<opts>] <container>
Attach to a running container
--no-stdin Do not attach STDIN (i.e. attach in read-only mode)
--detach-keys ="<keys>"
Override the key sequence to detach a container. Default:
"ctrl-p ctrl-q"

$ docker exec [<opts>] <container> <command> [<arg> ...]
Run a process in a running container
-i, --interactive

Keep STDIN open even if not attached
-t, --tty Allocate a pseudo-TTY
-d, --detach Detached (daemon) mode
$ docker top <container> [<ps options>]
Display the running processes within a container. The ps
options are any options you would give to the ps command
docker cp [<opts>] <container>:<src_path> <host.dest_path>
docker cp [<opts>] <host_src_path> <container>:<dest_path>
Copy files/folders between a container and the local
filesystem. Behaves like Linux command cp -a. It’s
possible to specify - as either the host_dest_path or
host_src_path, in which case you can also stream a tar
archive.
--follow-link
Follow symbol link in source path
$ docker logs [<opts>] <container>
Fetch the logs of a container
-f, --follow Follow log output: it combines docker log and docker
attach
--since ="<timestamp>"
Show logs since the given timestamp
-t, --timestamps
Show timestamps
--tail ="<n>" Qutput the specified number of lines at the end of logs
$ docker wait <container> [<container>...]
Block until a container stops, then print its exit code

@ 4

-L,

Saving and loading images and containers

$ docker save [<opts>] <image> [<image>...]
Save one or more images to a tar archive (streamed to
STDOUT by default)
-o, —-output =""
Write to a file instead of STDOUT
$ docker load [<opts>]
Load image(s) from a tar archive or STDIN. Restores both
images and tags
-i, --input ="<tar-archive>"
Read from a tar archive file, instead of STDIN. The tarball
may be compressed with gzip, bzip, or xz.
-q, -—quiet Suppress the load progress bar
$ docker export [<opts>] <container>
Export the contents of a container’s filesystem as a tar
archive
—-output ="<file>"
Write to a file instead of STDOUT
$ docker import [<opts>] <file>/<URL>/- [<repository>[:<tag>]]
Create an empty filesystem image and import the contents
of the tarball into it, then optionally tag it.
-c, —--change =[]
Apply specified Dockerfile instructions while importing
the image; one of these: CMD, ENTRYPOINT, ENV, EXPOSE,
ONBUILD, USER, VOLUME, WORKDIR
--message ='"<msg>"
Set commit message for imported image

-o,

-m,

Communicating with Docker Registry

$ docker login [<opts>] [<server>]
Log in to a Docker Registry on the specified <server>.
If server is omitted, https://registry-1.docker.io is used.
Credentials are stored in ~/.docker/config.json
-u, -—-username ="<username>"
-p, ——password ="<password>"
$ docker logout [<server>]
Log out from a Docker Registry on the specified <server>.
If server is omitted, https://registry-1.docker.io is used.
$ docker push [<registry-host>[:<registry.port>]/]<name>[:<tag>]
Push an image or a repository to a Registry
$ docker pull [<opts>] [<registry_host>[:<registry_port>]/]<name>[:<tag>]
Pull an image or a repository from a Registry
-a, -—all-tags
Download all tagged images in the repository

Listing images and containers

$ docker images [<opts>]
List images

-a, --all Show all images (by default, intermediate image layers
aren’t shown)
--no-trunc Don’t truncate output

-f, —-filter ="<filter>"
Filter output based on these conditions:
e dangling=true - unused (untagged) images
® label=<key> Or label=<key>=<value>

--format ="<template>"
Pretty-print containers using a Go template, e.g. {{.ID}}.
Valid placeholders:

.ID - Image ID

.Repository - Image repository

.Tag - Image tag

.Digest - Image digest

.CreatedSince - Time since the image was created

.CreatedAt - Time when the image was created

.Size - Image disk size

$ docker ps [<opts>]
List containers
-a, --all Show all containers (including non-running ones)
--no-trunc Don’t truncate output
-q, -—quiet Only display numeric IDs
-f, ——filter ="<filter>"
Filter output based on these conditions:
® exited=<int> an exit code of <int>
® label=<key> Or label=<key>=<value>
status=(created|restarting|running|paused|exited|dead)
name=<string> a container’s name
id=<ID> a container’s ID
before=(<container-name>|<container-id>)
since=(<container-name>|<container-id>)

ancestor=(<image-name>[:tag] |<image-id>| image@digest) -
containers created from an image or a descendant
® volume=(<volume-name>|<mount-point-destination>)

--format ="<template>"
Pretty-print containers using a Go template, e.g. {{.ID}}.
Valid placeholders:
.1D - Container ID
.Image - Image ID
.Command - Quoted command
.CreatedAt - Time when the container was created.
.RunningFor - Time since the container was started.
.Ports - Exposed ports.
.Status - Container status.
.Size - Container disk size.
.Names - Container names.
.Labels - All labels assigned to the container.
.Label - Value of a specific label for this container. For
example {{.Label "com.docker.swarm.cpu"}}
e .Mounts - Names of the volumes mounted.

Inspecting images and containers

$ docker inspect [<opts>] <container>/<image> [<container>/<image>...]
Return low-level information on a container or image

-f, -—-format ="<format>"
Format the output using the given Go template. You can
see the available placeholders by looking at the total output
without --format

-s, --size Display total file sizes if the type is container

-t, —-type ="<container>/<image>"

Return JSON for specified type only

Removing images and containers

$ docker rm [<opts>] <container> [<container>...]
Remove one or more containers from the host

-f, --force Force the removal of a running container (uses SIGKILL)
-1, --link Remove the specified link and not the underlying container
-v, —-volume Remove the volumes associated with the container

$ docker rmi [<opts>] <image> [<image>...]

Remove one or more images from the host

Force the removal of images of a running container
Do not delete untagged parents

-f, -—-force
--no-prune

by Dmitry Frank http://dmitryfrank.com
License: MIT
Your contributions to this card are welcome: https://github.com/dimonomid/docker-quick-ref

http://dmitryfrank.com
https://github.com/dimonomid/docker-quick-ref

